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In any Lagrangian field theory invariant under the Poincaré group, the
covariant fields describing particles of a given spin 8 transform as a finite
dimensional non-unitary representation of the Lorentz group. However, the
particle states created by the operator Fourier modes of these fields form the
basis of a unitary representation of the Poincaré group. Similarly the Fourier
modes of a field in four-dimensional anti-de Sitter space (ads,) form the basis
of a unitary representation of the ads, group S0(3,2). In 1963, Diracl)
discovered two remarkable unitary irreducible representations (UIR) of the ads,

group S0(3,2) whose Poincaré limit 1is singular. These representations are

2)

referred to as singletons and have no Poincaré analogues and no obvious field
theoretic interpretation. One way to understand them is in terms of extreme gauge

fields whose gauge invariance 1is such as to allow them to be gauged away

3

everywhere, except at the boundary of adS space This interpretation is

supported by the analysis of a number of Kaluza-Klein supergravity theories fm
which the (supersymmetric) ground state is of the form adSnXSm. For example, the
modes in adS, that result from a compactification of d = 11 supergravity on s’

can be grouped into unitary irreps (= irreducible representations) of the ad$S

4),5) 5),6)

supergroup 0Sp(8/4,R) . The singleton irreps

of this supergroup indeed

7),5)

appear in the harmonic expansion on s’ of the d = 11 fields , but can be

gauged away. This state of affairs is repeated for the st compactification of

8)

d = 11 supergravity to d = 7", where the relevant adS supergroup is QSp(8%/4) =

0Sp(6,2/4), and for the g2 compactification of chiral N = 2, d = 10 supergravity
9)

to d = 5, where the relevant adS supergroup is SU(2,2/4) In each case the

fields of the singleton supermultiplet that can be gauged away are precisely

those of the maximally supersymmetric and conformally invariant matter (spins <1)

*)

field theory of one dimension lower ‘. Thus, the relevant singleton irrep of

0Sp(8/4,R) consists of the fields of a d = 3, N = 8 multiplet with spins (0,%),

while the "singleton" irrep of 0Sp(8*/4) consists of the fields of the d = 6,
N = 4 antisymmetric tensor multiplet, and the '"singleton" irrep of SU(2,2/4)
consists of the fields of the d = 4, N = 4 super Yang-Mills multiplet. This
result 1s not surprising since the ade group acts as the conformal group in
(d-1)-dimensional Minkowski space. The purpose of this letter is to show that the

same interpretation can be given to the singleton supermultiplets of the d = 3

10)

adS supergroups. In a recent work three of us have classified these

Actually, the corresponding supermultiplets in d = 5 and 7 are referred to as
doubleton supermultiplets for reasons explained in 5) and the last reference

in 8). In this paper, we shall refer to all these supermultiplets generically
as singleton supermultiplets.



supergroups and constructed the positive energy (lowest weight) UIR's of a large
class of these supergroups. The novel feature that arises for d = 3 is that the

adS; group S0(2,2) is not simple and factorizes as

n

S0(2,2) ¥ s0(2,1) ® S0C2,1) & Sp(2,R)® Sp(2,IR).

Thus the extension to an adS; supergroup can be done in a variety of ways and one

ends up with a rich class of ad$ supergrouple).

Of interest here are those
adS; supergroups for which one or both Sp(2,R) factors is extended to 0Sp(2N/2,R)
because the supergroups of this form have singleton irreps. In particular, we

shall focus on those cases for which one or the other factor 1is the supergroup
0Sp(8/2,R).

The '"positive energy"” (lowest weight) wunitary irreps of O0Sp(2N/2,R)
decompose into infinite dimensional irreps of Sp(2,R), transforming according to
some finite dimensional irreps of SO(2N). The irreps of Sp(2,R) that occur are
all of the lowest weight type and can be labelled by.’the U(l) € Sp(2,IR) quantum
number &, of ‘the lowest weight vector. There are two singleton irreps of

0Sp(2N/2,R) and they decompose under the even subgroup SO(2N)®Sp(2,R) as

follow510)

ST= [(00...10) , 2o=4 ] ®[(00.-..01)  Lo= 3 ] , D

St = [(00..01), L= 3] @ [(00-.-10) . Lo %] | ()

where the Dynkin labels (00...01) and (00...10) refer to the two half-spin
representations of SO(2N). The odd generators of O0Sp(2N/2,R) transform as the
finite dimensional (2N,2) representation of SO(2N)®Sp(2,R). Acting on the
singleton supermultiplet they interpolate between the two UIR's of Sp(2,R)
transforming in the two half-spin representations of SO(2N). For SO0(8) the
half-spin representations are eight-dimensional just as the vector

representation. Thus the singleton supermultiplets of 0Sp(8/2,R) have the

decomposition

S':= (8, L2.4) @& (&8, 2.°%) (3)

S*= (9., £.=L) ® (8, , £o=3) %)
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where 8s and 8C are the two half-spin representations of S0(8). Now the
representations of SO0(8) exhibit the unique triality symmetry which does not
extend to general SO(2N) (N # 4). This is a reflection of the cyclic symmetry of
the SO(8) Dynkin diagram. The principle of triality allows us to define three
different forms of 0sp(8/2,R) [in fact, of all OSp(B/ZM,IR)]- These different
0sp(8/2,R) superalgebras are distinguished by the transformation properties of

the odd generators under the even subgroup S0(8)@sp(2,R):

OSp(2/2,R), L(l?’1)+(1\3)]+[(?v~;l)] e

(1]

osple/1,R) [Cag, 1)+ (1,3)]+ [C8e,2)] , @

"

OSp(8/2,R), (Cae. D)+ (4.3)]+ Lo, 20] . @

The singleton supermultiplets given by (3) and (4) are those of OSp(B/Z,R)v. To
obtain the singleton supermultiplets of OSp(B/Z,IR)S and OSp(B/Z,lR)C one needs
only to do a triality permutation of the eight-dimensional representations 8v’ 8

s
and Sc' Thus for OSp(B/Z,!R)s we have the following S0(8)®Sp(2,R) decomposition of

the singleton supermultiplets

¢ s (8, 4emd) ® (%, 403) @

Si = (gc,»co:fl)® (gv )lo;—%) . (9)

Similarly, for the singleton irreps of OSp(8/2,|R)C we have

A\

S:_=(?S,,€° Ne (8, £o=2) (10)

L

Si = ( gv; Lo Zl(') D (esyl«o:%) . (1)

Interpreting Sp(2,R) = s0(2,1) as the one-dimensional conformal group we can
associate with the UIR's of Sp(2,R) labelled by 2; = 1/4 and L, = 3/4 a
one-dimensional "bosonic" field X(E) and a Yfermionic" field O(E), respectively.
Thus to the singleton supermultiplets of 0Sp(8/2,IR) given above we can associate
a supermultiplet of fields (X,8) with different SO0(8) labels. of particular

interest to us are the supermultiplets for which the "bosonic" fields X(E)



transform in the vector representation of SO(8). This 1is because we will
eventually identify these fields with the transverse co-ordinates in a

ten-dimensional space-time. Thus the relevant supermultiplet of fields are

(X tn), %)) (12

corresponding to the singleton irrep Si and the multiplet

( X (5), ©(n)) (13)

corresponding to the singleton irrep Sg. [The indices i,j are 8v indices; «,B,...

are 8S indices and &,B,... are 8C indices of S0(8). ]

Let us now consider an adS3 supergroup of the form

Osp(&/2,R), & OSp(8/2,R),_ , u®

where A,B denote the different forms (v,s,c) of the superalgebra 0Sp(8/2,R) and +
and - refer to the fact that the respective Sp(2,R) factor acts on the light-cone
co-ordinates £, = t+g and E_. = 1-0, respectively. This is an adS supergroup for
which both Sp(2,R) factors have been "supersymmetrized". It corresponds to an
(BA,SB) supersymmetry in the sense of Ref. 10). For given indices A and B the
superalgebra (14) has four singleton supermultiplets. The singleton supermulti-
plets of fields that are of interest are those obtained by tensoring the super-

multiplets (12) and (13). For the adS3 supergroup

osp(g/2,R),, ® OSp(&8/2,R)._ (15)

we have the supermultiplet

(X5C5), X¥(5) 5 ©% (34, 0%(3.)) (16)

For the supergroup

OSP(S’/z,IR)C+ (29) OSP(?/l,lR)S_ (17)

we have the interesting supermultiplet



(x5s,), XECE) 5 e%(1,) , ®%(s.)) . uw

The field theories of the adS; singleton supermultiplets (16) and (18) will be
superconformally invariant two-dimensional field theories. Using a triality
modified form of the notation of 1l1), they will have an (8c’8c) and an (BC,BS)
conformal supersymmetry. This interpretation 1is confirmed by a study of
osp(8/2,R) ® 0Sp(8/2,R) as the finite dimensional superconformal grouplo). The
fields of (16) and (18) are of course only appropriate for an on-shell
description of a d = 2 field theory. To go off-shell we should replace them by

d = 2 covariant fields:

(( x‘cs)y; e (%Y, ©f (1)) (19

and
: x x (20)
L .
[ xEp); el(y), o3 ny)
where £ = (t,0) and L(R) indicates a chiral (anti-chiral) d = 2 spinor. It is
obvious, at this point, that the desired actions are just those of Green and
Schwarle) for closed superstrings of type IIA and IIB in the light-cone gauge.

For the latter we have (omitting factors of 4mna, etc.) the action

S = fep fa,xiaxtr ety ot} . @
This action has (8c,8c) type d = 2 supersymmetrylz). To see that it has an
(8c’8c) type conformal supersymmetry, let us restrict SO(8) to its SU(3) subgroup
under which both 8v and BS decompose as 3 @ 3@ 1 ® 1. Then the action (21) can
be interpreted as a conventional supersymmetric o-model with a flat target
space13). This is certainly d = 2 conformal invariant. But conformal invariance
together with (BC,BC) supersymmetry implies (8c,8c) superconformal invariance. It
seems likely that this is the unique action with (BC,SC) conformal supersymmetry
given the very stringent conditions that are already implied om the target space

of ad = 2 s-model by (4,4) supersymmetrylA).

The heterotic superstring can similarly be thought of as a singleton field

theory, but in this case we must consider an adS; supergroup of the form



0Sp(&8/2,R),, ® Sp(2,R)_ . (22)

There are two singleton irreps of Sp(2,R), which are the analogues of the "Di"

and the "Rac" representations of adS, group SO(3,2)1)’2)

. They can be associated
with the Fourier modes of a one-dimensional 'bosonic" field ¢(E) and a
"fermionic" field ¢(E). To obtain the fields of the heterotic string we must take
24 bosonic fields ¢8(£_), a=]1,...,24 and a singleton supermultiplet of

osp(8/2,R) , i.e.,
c+

(XL(L,) . 4>°L(§',) ' G“LL)) . (23)

These are then the fields of a two-dimensional (SC,O) superconformally invariant

field theory, the heterotic superstrinng).

It was observed sometime ago that the tensor product of the singleton irreps
of the adS, group S0(3,2) decomposes into massless irreps on1y16).lking the
methods of Ref. 17), one can prove similar results for all non-compact groups and
supergroupslg). For example, the tensor product of two singleton supermultiplets
of adS supergroups in any dimension decompose into massless supermultiplets only.
The tensor product of more than two singleton supermultiplets decompose into
massive UIR's of the respective adS$s supergrouplS). The superstring theories
exhibit similar features in a different context. Their spectra coasist of
massless and massive states of ever increasing mass. For example the massless

excitations of the type IIB superstring are found in the tensor product of two

singleton supermultiplets, e.g.,

(2, ®@8) ® ( 2,® ®;) (26)

with the SO(8) irreps being thought of as d = 10 "helicity". It is equally the

SO0(8) content of the N = 16, 4 = 3 supergravitylg) with SO(8) considered as an
internal symmetry group. Thus, there is a curious parallel between d = 10 and
d = 3 supergravity theories.

We shall conclude this letter with a construction of the singleton irreps of

OSp(8/2,m)v. We do this by the oscillator method17). We introduce the

superannihilation and creation operators



QL a [
A : ‘1 X P , (25)

\a®

where a is bosonic and oV = a; (n=1,2,3,4) are fermionic satisfying the

supercommutation relations

ilealek: gAB . (26)

The operators N, and nA transform in the (1,4) and (1,4) representations of the
maximal compact subsupergroup U(l/4) of OSp(8/2,lR)v. With respect to this

subsuperalgebra the generators of OSp(B/Z,IR)v have a Jordan decomposition:

L. = L" Pz o) LO ® L+ ’ (27)

where 18 = U(1/4) = u©(1)®su(l/4). The L*, L~ and L° have the following

B

realization as bilinears in the superoscillators n n:

L™ = Na .1‘3 ,
L = A g v e
LY = 2%

It is easy to verify that these bilinears generate the Lie superalgebra
10),17)

A)

%",

(28)

OSp(8/2,|R)v in a super-Hermitian basis

Now consider any set of states |R>, in the super Fock space of nA, that
transform irreducibly under the maximal compact subsupergroup U(1l/4) and are
annihilated by the operators belonging to the L~ space. Then by acting on |Q>
repeatedly by the operators belonging to the L* space one generates an infinite
set of states that form the basis of a UIR of 0sp(8/2,R) . The set of states o
is referred to as the lowest weight vector of the respective UIR of OSp(S/Z,IR)v.»
The infinite set of states that form the basis of a UIR of OSp(8/2,lR)V can be
decomposed into lowest weight UIR's of Sp(2,R) transforming in certain irreps of
S0(8). The action of the bilinear operator a*tat belonging to L* moves ome within
a UIR of Sp(2,R) while the bilinear operator a2’ € L* moves one within an irrep
of S0(8). The odd generator ate" € Lt is a supersymmetry generator and moves one
from a UIR of Sp(2,R) with a given SO(8) irrep to another UIR of Sp(2,R) with

different SO(8) transformation properties.



Since we have realized the generators of OSp(8/2,IR)v as bilinears of a
single superoscillator nA there exist only two lowest weight vectors |Q>
transforming irreducibly under U(1l/4) and are annihilated by L~. These lowest
weight vectors are the vacuum state 10> and the one-particle state nAl0> which

consists of one bosonic and four fermionic degrees of freedom:

WAle> = A le> ® aPlo> . (29)

The singleton supermultiplet determined by the vacuum state |0> as the lowest
weight vector 1is simply the multiplet sl in Eq. (3) while the supermultiplet
corresponding to the lowest weight vector nA|0> is the supermultiplet §2 given in
Eq. (4).
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